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ABSTRACT 

In the present chapter we have considered M*/G/1 queue with and without vacation time under non-
preemptive last-come-first-served (LCFS). The Laplace Stieltjes transform of the distribution function 
of the steady state waiting time is found. The first two moments of the waiting time are obtained. We 
find the relationship between second moments of the waiting time in the M*/G/1 queue with and 
without vacation time under first-come-first-serve (FCFS) and LCFS. 
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INTRODUCTION 
In the present chapter we study the batch arrival M*/G/1 queue with and without 
vacation time under non-preemptive last-come-first-served (LCFS). In some queuing 
systems, the server takes a vacation of random length each time the system becomes 
empty. The vacations time is utilized for some additional word. If the server returns from 
a vacation and he finds one or more customers waiting, he works until the system implies 
then takes another vacation. If the server returns form a vacation and finds no customers 
waiting, he takes another vacation immediately. The M*/G/1 queue with vacation time 
has been studied by a number of workers such as Copper (1970), Levy and Yechiali 
(1975), Scholl and Kleinrock (1983). In particular Scholl, M. and Kleinrock (1983) has 
studied the waiting time of the M*/G/1 queue with a cation time under three queuing 
disciplines, which are independent of service time: First-come-first-served (FCFS), Service 
in random order (SIRO) and non-preemptive LCFS. Several authors have studied the batch 
arrival queueing system /G/1 under FCFS [Chaudhary (1979), Chaudhary and Templeton 
(1983), Gros and Harris (1985) and Kleinrock (1975)] Recently Baba (1986) has studied 
the M*/G/1 queue with vacation time under FCFS However, there has been no work for 
the M* /G/1 queue with vacation time under other service discipline. 
Non-preemptive LCFS queueing discipline is applicable to many practical situations such 
as pushdown stack and inventory system, etc. The batch arrival queueing model appears 
in many situations such as computer commination systesm. So it is important to analyses 
the mode that will be studied in this chapter. In the batch arrival queueing system under 
non-preemptive LCFS, the following two queueing disciplines are considered: 
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1. QUEUEING DISCIPLINE 1: 
The customers which are included in the same batch as the customer in service are served 
previously than the customers who arrived at the system after the customer in service. 
(This discipline in considered as the case that arrived batch is treated as a super 
customer). 
 
2. QUEUEING DISCIPLINE 2: 
The order of service is non-preemptive LCFS with respect to batches and the order of 
service in a batch is random (This discipline is considered as the non-preemptive LCFS 
discipline with respect to all customers in the system) 
In the present chapter, we study the queueing system under discipline 2. This chapter 
provides Laplace stieljges transform (LST) of the distribution of function of the steady 
stage waiting time for the M*/G/1 queue with and without vacation time under non-
preemptive LCFS. The first two moments of the waiting time are obtained. 
The relationship that we find in he present work between the second moment of the 
waiting time for the FCFS and LCFS in M*/G/1 queue with and without vacation time is an 
extension of the result which has been found in the M/G/1 queue with and without 
vacation time. 
 
ASSUMPTIONS AND NOTATIONS 
We consider the M*/G/1 queue with and without vacation time. We study the queueing 
system under queueing discipline 2 stated in the previous section. For the M*/G/1 queue, 
it is assumed that customers arrive in batches according to a time homogenous Poisson 
process with rate. The batch size is a random variable and 
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We assume that  nth( n = 1, 2, 3) factorial moments of  X are finite and defined by 
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S = Service the time of a typical customer 
S (X) = Distribution function of S 
S*(θ) =  LST of the S 
 

The distribution function  S(x) and  LST  (S*(θ))  of S are given by   
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In order to analyse the queue with vacation time, we denote 
V  = Typical vacation time 
V(X)  = Distribution function of V 
V*(θ) = LST of the V 
The distribution function V(x) and LSTV*(θ) of V are given by 
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Let- 
B = Busy period that starts with one customer 
B(X) = Distribution function of B 
B*(θ)= LST of the B 
S1 = Service time of one customer during one busy period (one let it is S1=x) 
N1 = Number of customers arrivals during the interval S1 
 

By conditioning on S1 and N1, we have the following conditional transform 

 1 1( / , ) [ * ( )]B X XE e S X N n e B                                    ...(10) 
Unconditioning on we have- 
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where k
ng  is the k-fold convolution of ng  with itself, with 10.k

ng    Finally, we have 
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In the case of the traffic ( ( ) 1g E S    , intensity nth ( 1,2,3n   ) moments of B(X) are 
given by 
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WAITING TIME DISTRIBUTION 
 
1. The  M*/G/1 QUEUE WITHOUT VACATION TIME UNDER LCFS: 
Let rn ( 1,2...n  ) be the probability of an arbitrary customer being in the thn  position of 
an arrived batch. Burke (1975) showed, using a result in the renewal theory that it is 
given by 
                  1

n kk n
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Define the p.g.f. 
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At the time of an arbitrary test customer’s arrival, there will be a number of customers 
arriving in his batch who will be served before him. This number is ( 1)n   with 
probability rn. Suppose that an arbitrary test customer named C0 arrives when the server 
is idle. The (n-1) customers arriving in C0’s is batch who will be served before him are 
named C1……..Cn-1 respectively, Observe that the effect of Ci (i=1,2….. n-1) on the waiting 
time C0 is the one busy period Bi generated by Ci since B1……,Bn-1 are mutually 
independent and the proportion of time that the server is idle in an  xM /G/1  queue is (1-
ρ), the steady state waiting time C0 of  is distributed as B1 + - - - + Bn-1 with probability (1-
ρ)rn. Next suppose that C0 arrives when the server is busy. Let the remaining service time 
of the customer in service is C0 is arrival epoch be S Suppose that ‘m’ (a random variable) 
customers named 

1,.....,n m nC C  
 arrive during S. Denote by ( 1,2,...., 1)iB i m n    the 

one busy period generated by Ci, similar to the case that the server is idle. The steady 
state waiting time of C0 is distributed as B1+….+Bn-1+Bn+…+Bm+n-1  with probability ρrn. 
Let, 
                      LW   Steady state waiting time of an arbitrary customer 

                  *( )LW    LST of 
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Using equations (17) and (11) we have 
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Using equation (17) and (12) we have 
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Using Equation (17) and (7), we have 
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By taking the first and second derivatives of (18) at θ = 0 at we obtain the following 
expressions: 
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REMARK 1: 
 Let WF be the steady-state waiting time without vacation time when the service discipline 
is FCFS. Its LST, * ( )FW   is given by 
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By taking the first and second derivatives of (21) at 0  ,  
We have, 
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Since the order of service is independent of time we see immediately that the mean queue 
size and the mean waiting time for LCFS must be same as for FCFS. Thus it is clear that 

( ) ( )L FE W E W  from (19) and (22) 

However, the second moment 2( )LE W  is larger than 2( )FE W . Comparing (20) and (23), 

we have- 
            2 2( ) (1 ). ( )F LE W E W                            ...(24) 

It is surprising to find that this result holds for the M*/G/1 queue as well as for M/G/1. 
 
2. The M*/G/1 QUEUE WITH VACATION TIME UNDER LCFS: 
As in the case 1., since the proportion of time that the server is vacationing in the  M*/G/1 
queue with vacation time is (1-ρ), the steady-state waiting time of an arbitrary test 
customer is distributed as V+B1+….+Bm+n-1 with probability (1-ρ)rn, where m is the 
number of customers arrived during the residual vacating time V and as S+B1+…+Bm+n-1 
with probability ρrn where m is the customers arrived during the residual service time S. 
 

Let- 
            

VLW  = Steady state waiting time of an arbitrary customer 
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By taking the first and second derivatives of (25) at 0  ,  
We have- 
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REMARK 2: 
Let 

VEW  be the steady state waiting time with vacation time when the service discipline 

is FCFS. Its LST, * ( )VLW   is given by 
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By taking the first and second derivatives of (28) at 0  , We have 
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As in case 1, it can be stated that – 
 

          ( ) ( )VL VFE W E W  
and 
         2 2( ) (1 ) ( )VL VLE W E W    
 
CONCLUSION 
We have studied the waiting time of the M*/G/1 queue without and with vacation time 
under non-preemptive LCFS Comparing it with FCFS, have seen that For the M*/G/1 
queue, equations (31)-(34) hold (School and Kleinrock, 1983)- 
 

             ( ) ( )L FE W E W               ...(31) 

             2 2( ) (1 ) ( )F LE W E W                ...(32) 
            ( ) ( )VL VFE W E W               ...(33) 

            2 2( ) (1 ) ( )VF VLE W E W                ...(34) 
For the M/G/1 queue, equations (31)-(34) hold [Scholl and Kleinrock. (1983)]  

2 2( ) (1 ) ( )VL VFE W E W    
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