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ABSTRACT

In this section we study of an approximate solution to a three dimensional free convection flow of a
viscous, incompressible fluid past an impulsively started infinite, vertical porous limiting surface
through porous medium with transverse sinusoidal suction in presence of uniform magnetic field.
Using perturbation technique, the expressions for the transient velocity in the main flow direction, the
temperature, the sinusoidal skin fraction and the rate of heat transfer have been discussed with their
respective dependence on the Prandtl number Pr, Grashoff number Gr, magnetic parameter M and
porosity parameter K.
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INTRODUCTION

The phenomenon of MHD free convection has many importances in technological
applications, e.g.- in cooling reactors, providing heat sinks in turbine blades etc. The
effects of free stream oscillations on the boundary layer flow of a viscose fluid are also
often encountered in engineering applications e.g., in the aerodynamics of a helicopter
rotor or in a variety of bio-engineering problems, such as fluttering airfoil etc. Such a
study was initiated by Lighthill (1954). By assuming the oscillatory flow to be super
imposed on the steady non zero mean flow, he linearized the momentum equations and
solved them by the integral method, Stuart (1955). Further extended this idea to study a
two dimensional flow past an infinite porous plate. Further, Soundalgekar (1973a&b), and
Soundalgekar and Pop (1974) analyzed the unsteady flow past an infinite vertical porous
plate with constant and variable suction respectively. In all the study mentioned the plate
is assumed to be stationary.

The flow of an incompressible viscous fluid past an impulsively started infinite horizontal
plate in its own plane was first studied by Stokes (1851), also known as Rayleigh’s
problem. Recently, Georgantopoulos (1979) has discussed the free convection effects on
the oscillatory flow in the Stoke’s problem past an infinite, vertical porous limiting surface
with constant suction. Singh (1989) analyzed three dimensional oscillatory flows past a
plate. Most of the authors have assumed the suction velocity either constant or variable
with time, thus restricting themselves to the two dimensional flows only. One possible
suction distribution is a transverse sinusoidal one which give rise to a cross flow and
hence to a three-dimensional flow over the surface. Gorla and Singh (2005) have been
discussed free convection effects on stoke’s problem with transverse periodic suction.



Therefore, in this section we study of the free convection effects on flow of a viscous,
incompressible fluid past an impulsively started infinite, vertical porous limiting surface
through porous medium with transverse sinusoidal suction in presence of uniform
magnetic field.

MATHEMATICAL FORMULATION

We consider three-dimensional free convection flow of a viscous, incompressible fluid
past an impulsively started infinite, vertical porous limiting surface through porous
medium with transverse sinusoidal suction in presence of uniform magnetic field, which

consists of a basic uniform distribution superimposed with a sinusoidal distribution
!/

&V, CosSTT —2— A coordinate system is assumed with limiting surface lying vertically on
14

x' =z plane such that the x'_ axis is oriented in the direction of the buoyancy force and
y' - axis is perpendicular to the plane of the limiting surface. Initially the limiting surface
is at rest but at t > 0 it starts moving impulsively in its own plane with constant
velocity U , and its temperature is instantaneously raised or lowered to T W' which is

thereafter maintained constant. Then under the usual Boussinesq’s approximation the
non-dimensional equations governing the problem are given by.
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The corresponding boundary conditions are given by-
y=0: u=1, v=—(l+ecosnz), w=0, O=-
..(6)

y—oowo:u=U(@),v=-1, w=0, p=p, 0=0

When the amplitude & < < 1, we assume the solution in the neighborhood of the limiting
surface of the form
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and for the free stream-
U=1+¢ge™
..(8)

Substituting (7) and (8) in equations (1) to (5) and comparing the coefficient of like

power of £, and neglecting those of &’. The terms free from & given below describe a
steady two dimensional problem with constant suction at the limiting surface-

v, =0 (9)
Uy — vy —nu, =—n—Gro, (10)
Vy —VyVy — IV, = Py .(11)
wy — VoW, —nw, =0 (12)
6, —Prv,6,=0 ~(13)

Where primes denote differentiation with respect to y. The corresponding boundary
conditions are:

y=0: u,=1, v,=-1, w,=0, 6,=1

..(14)
y—oo: y =1, vy=-1, w,=0, p,=ps, 6,=0
The solution of equations (9) to (13) under the boundary conditions (14) are:
uy =1+ B[ e -] .(15)
0, =e " ..(16)

0

With transverse velocity components vo = -1, wo = 0 and the pressure p, = p_. Taking

into account the solutions of the transverse velocity components of the above two
dimensional problem, the terms the coefficient of & give following equations:
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With boundary conditions:
y=0: u =0, vy=—coszmz, w=0, 6,=0
-(22)

y—w:u =" v=0, w=0, p=0,06=0

Equations (17) to (21) describe the three dimensional flow. To solve these equations, we
separate the variables y, z and t as follows:
iot

wy =uy, (y)e™ +u,(y)cosmz

v =v,(»)e” +v,(y)cosnz
1 =Vl 12\

- (23)

~

w, =—{zv1'1(y)ei“” +(1/7)v,(y)sinzz }

it

D, =p,(¥)e” + p,(y)cosmz

6,=6,,(y)e” +0,,(y)cosnz

/

Expressions for vi and wiin equation (23) are chosen show that the equation of continuity
(17) is satisfied.

Substituting (23) in equations (18) to (21) and equating harmonic terms, we get the
following equations with corresponding boundary conditions:

0] iw
i _(_+ nju” =——=Gro, +vu,—n -(24)
4 4

2
u, +u, —(7r + n)u12 =v,u, —Gro,, -(25)
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0!, +Pro), — n’0,, =Prv,,0, ~(33)
y=0: 6,=0, 6,=0
(34)

y—>o: 6,=0, 6,=0
From these equations with the help of equation (23), the solutions for ui, vi, wi, p1 and
0, are obtained as:
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Substituting (15), (16) and (35) to (39) in expressions for u and @ in equation (7), we get
the expression for the main flow velocity and temperature field as:

u(y,z,t) =uy(y)+eu,(y,z,t) .. (40)

0(y,2)=0,(»)+¢0,(y.2) - (41)

The main flow velocity can now be expressed in terms of the unsteady fluctuating parts as
follows:

u(y,z,t) =u,(y)+&[U, coswt — U sin ot +u,, cosnz| .. (42)
Where,
U, +iU =1-¢™" . (43)

T
Hence, the expression for the transient velocity for wf = E is given by:

u(y,z,i) =u,(y)+e¢ [ulz cosz—e ™’ sin Bzy] . (44)
20

From the velocity components u and w, we calculate the skin friction in the main flow
direction and in the direction perpendicular to the main flow respectively in the non
dimensional form as:

!’
T ou
T, =— =(—] = u, +&u, at y=0 .. (45)
pUOvO ay y=0
!’
T ow g .
T, =—5= (—] = ——[ 2n]n2 —ﬁfanmﬁz .. (46)
PV y =0 T
In terms of the amplitude and the phase of skin friction equation (45) can be written as-
T =T +8‘m‘cos(a)t+a) .. (47)

Where

. =(B,— B,)+elB,, cosnz B, ]

. m,
m=m_+1im, tana = —
mr
From the expression for the temperature field, we can calculate g, the rate of heat transfer
as-
!
1% 00
qz—%zi—] =0,+e0 at y=0
vok(T — Tw) oy o
q=-Pr+¢p, cosmz
Where,
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RESULT AND DISCUSSION

In order to get a physical insight into the problem and for the purpose of discussing the
results obtained, numerical calculations have been carried out for the transient velocity,
the temperature, the rate of heat transfer and the sinusoidal skin-friction. In this section,
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we study the effects of the Grashoff number Gr, Prandtl number Pr, magnetic parameter M
and porosity parameter K.
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Fig. 1: Transient velocity profiles for different value of Pr and Gr
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Fig. 2: Transient velocity for different value of M and K.
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Fig. 3: Temprature profile for different value of Pr.
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Fig. 4: Rate of heat transfer for different value of Pr.
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Fig. 5: Sinusoidal skin friction for different value of Pr, M, K and Gr.

The transient velocity profiles are plotted against y shown in the figure- 1, when the
suction effects is maximum (z = 0) for@w =5,& =0.2, M = 0.2, and K = 2. It is observed

that transient velocity increases sharply till y = 1.2, after it transient velocity decreases
continuously with increasing in y@P. It is also observed that the transient velocity
increases with increasing Grashoff number Gr but it decreases with increasing Prandtl
number Pr.

The transient velocity profiles are plotted against y shown in the figure- 2, when the
suction effects is maximum (z = 0) for@ =5,& =0.2, Gr =5 and Pr = 0.71. It is observed

that transient velocity increases sharply till y = 1.2, after it transient velocity decreases
continuously with increasing in y@P. It is also observed that the transient velocity
decreases with increasing magnetic parameter M but it increases with increasing porosity
parameter K.

The temperature profiles are plotted against y shown in the figure- 3, when the suction
effects is maximum (z = 0) for@ =5, =0.2, M = 0.2, K = 2 and Gr = 5. It is observed

that the temperature decreases with increasing Prandtl number Pr.

The rate of heat transfer is plotted against z shown in the figure- 4, for different value of
Pr. It is observed that the rate of heat transfer decreases with increasing Prandtl number
Pr.

The sinusoidal skin friction is plotted against z shown in the figure- 5, for different value
of Pr, M, K and Gr. It is observed that the sinusoidal skin friction decreases with increasing
Prandtl number Pr and magnetic parameter M, but it increases with increasing Grashoff
number Gr and porosity parameter K.
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CONCLUSION

The theoretical solution of three dimensional MHD free convection flow of a viscous,

incompressible fluid past an impulsively started infinite, vertical porous limiting surface

through porous medium with transverse sinusoidal suction. The study concludes the

following results.

1. The transient velocity increases with increasing Grashoff number Gr but it decreases
with increasing Prandtl number Pr.

2. The transient velocity decreases with increasing magnetic parameter M but it
increases with increasing porosity parameter K.

3. The temperature decreases with increasing Prandtl number Pr.

4. The rate of heat transfer decreases with increasing Prandtl number Pr.

5. The sinusoidal skin friction decreases with increasing Prandtl number Pr and magnetic
parameter M, but it increases with increasing Grashoff number Gr and porosity
parameter K.
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