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ABSTRACT 

The present paper deals with the stochastic analysis of a system in which after each repair of failed 
unit, the repaired unit is sent for “final trial” before sending it for operation. Using regenerative point 
technique with Markov renewal process, the some of the reliability characteristics of interest are 
obtained. 
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INTRODUCTION 
Various researchers including […………………] working in the field of reliability have 
analysed many engineering systems by using two units in which one of the unit is 
operative and the other as cold standby. But the role of helping unit in the system is very 
important to make the system in operating position. The system can not operate without 
helping unit. The example of such type of system is battery in a four wheeler.  
Keeping the above view, we in this chapter analysed a two unit warm standby system 
with helping unit and automatic switch which is used to convert standby unit into 
operative at the time of failure of an operative unit. In this system it is assumed that the 
helping unit and automatic switch are not repairable, these are only replaceable. 
Using regenerative point technique with Markov renewal process, the following reliability 
characteristics of interest are obtained. 
1. Transition and steady state transition probabilities 
2. Mean Sojourn times in various states  
3. Mean time to system failure (MTSF) 
4. Point wise and Steady state availability of the system 
5. Expected Busy period of the repairman in (0,t] 
6. Expected number of visits by the repairman in (0,t] 
 
MODEL DESCRIPTION AND ASSUMPTIONS 
1. The system consists of two identical units in parallel configuration. Initially one unit is 

operative and the other is kept as warm standby. 
2. Upon failure of an operative unit the warm standby becomes operative 

instantaneously by the help of an automatic switch. The probability that switch will be 
in good position at the time of need is fixed and known. The switch is not repairable, it 
can only replace by the new one.  
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3. There is a helping unit in the system which is used to make the system in the operating 
position. If the helping unit fails the whole system ceases. The helping unit is not 
repairable, it can only replace by the new one and it gets priority in replacement.  

4. A single repair facility is available intermittently whenever needed. There is a 
possibility that the repair facility is busy in some other pre-occupation at the time of 
need and the failed unit has to wait for some time. Once the repairman enters into the 
system it will attend all the jobs i.e. repair and replacement both. 

5. The failure time distributions of operative, warm standby and helping units are 
exponential with different parameters while the distribution of repair time of units, 
replacement time for helping unit and automatic switch are arbitrary. Also the 
availability time for repair facility at the time of need follows arbitrary distribution.        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The transitions between the various states 
 
NOTATION AND SYMBOLS 
NO : Normal unit kept as operative 
NWS : Normal unit kept as warm standby 
Fr : Failed unit under repair 
FR : Repair of failed unit is continued from earlier state 
Fwr : Failed unit is waiting for repair  
Hg : Helping unit in good position  
Hrep : Helping unit under replacement 
ASrep : Automatic switch under replacement 
 : Constant failure rate of operative unit  
 : Constant failure rate of warm standby unit 
 : Constant failure rate of helping unit 
f(.), F(.) :  pdf and cdf of time to complete replacement of automatic switch  
g1(.), G1(.):  pdf and cdf of time to complete repair of the failed unit 
g2(.), G2(.):  pdf and cdf of time taken by repair facility to become  available  
h(.), H(.) :  pdf and cdf of time to complete replacement of failed helping unit by the 

new one        
p(=1-q):  Probability that automatic switch operates successfully at the time of need  
b(=1-a) :  Probability that repair facility is available at the time of need  
m1 :  Mean time to repair a unit = 0


 t.g1(t) dt 

DOWN  STATE
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m2 :  Mean time to replace failed helping unit = 0
 t.h(t) dt 

m3 :  Mean time to replace automatic switch = 0
 t.f(t)dt 

 

Using the above notation and symbols the possible states of the system are 
Up States 
S0  (NO, NWS, Hg)    S1  (NO, Fr, Hg)   
S2  (NO, Fwr, Hg) 
Down States 
S3  (NO, Fwr, Hg, ASrep)                  S4  (NO, NWS, Hrep)   
S5  (FR, Fwr, Hg)    S6  (NO, Nwr, Hrep)   
S7  (Fr, Fwr, Hg) 
 
TRANSITION PROBABILITIES 
 Let T0 (=0), T1,T2,.... be the epochs at which the system enters the states Si  E. Let Xn 
denotes the state entered at epoch Tn+1  i.e. just after the transition of Tn. Then {Tn,Xn} 
constitutes a Markov-renewal process with state space E and  
Qik(t) = Pr[Xn+1 = Sk, Tn+1 - Tn  t | Xn = Si]                                                                 …..….(1) 
is semi Markov-Kernal over E. The stochastic matrix of the embedded Markov chain is 
P = pik = lim Qik (t) = Q()                                                          ……...(2)   
           t  
By simple probabilistic consideration, the non-zero elements of Qik(t) are: 

Q01(t) = b.0t (+p)e-(++)u du      = b.


 p.
[1 – e-(++)t] 

Q02(t) = a.0t (+p)e-(++)u du       = a.


 p.
[1 – e-(++)t] 

Q03(t) = q.0t e-(++)u du               = q.



[1 – e-(++)t] 

Q04(t) = .0t e-(++)u du                 = 



[1 – e-(++)t] 

Q10(t) = 0t e-(+)u g1(u) du   
 

Q15(t) = 



.[1 - e-(+)t] - .0t e-(+)u G1(u) du 

Q16(t) = 



.[1 - e-(+)t] - .0t e-(+)u G1(u) du 

Q21(t) = 0t e-(+)u g2(u) du   

Q26(t) = 



.[1 - e-(+)t] - .0t e-(+)u G2(u) du 

Q27(t) = 



.[1 - e-(+)t] - .0t e-(+)u G2(u) du 

Q31(t) = 0t g(u) du   Q40(t) = 0t h(u) du 
Q61(t) = 0t h(u) du   Q71(t) = 0t g1(u) du 

Q(5)11(t) = 



.[0t g1(u) du - 0t e-(+)u g1(u) du]                                               ……….(3-16) 

Taking limit as t  , the steady state transition pij can be obtained from (2-16) . Thus  
pik = lim Qik(t)                                                          ……...(17) 
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      t 

p01 = b.


 p.
    p02 = a.


 p.

  

p03 = q.



    p04 = 




 

p10 = g*1(+)     p15 = 



.[1 - g*1(+)] 

p16 = 



.[1 - g*1(+)]  p21 = g*2(+)   

p26 = 



.[1 - g*2(+)]  p27 = 




.[1 - g*2(+)] 

p(5)11 = 



.[1 - g*1(+)]                                                 …..….(18-29) 

From the above probabilities the following relation can be easily verifies as; 
p01 + p02 + p03 + p04 = 1   p10 + p(5)11 + p16 = 1 
p21 + p26 + p27 = 1   p31 = p40 = p61 = p71 = 1                                  …….(30-33) 
 
MEAN SOJOURN TIMES 
The mean time taken by the system in a particular state Si before transiting to any other 
state is known as mean sojourn time and is defined as 
i = 0


 P[T>t] dt                                                                                                   …......(34) 

Where T is the time of stay in state Si by the system. 
To calculate mean sojourn time I in state Si, we assume that so long as the system is in 
state Si, it will not transit to any other state. Therefore; 

0 = 


1
    1 = 


1

.[1 - g*1(+)] 

2 = 


1
.[1 - g*2(+)]  3 = 0


 t.f(t) dt = m3 

4 = 0


 t.h(t) dt = m2  6 = 0


 t.h(t) dt = m2 

7 = 0


 t.g1(t) dt = m1                                                  …..….(35-41) 
 
CONTRIBUTION TO MEAN SOJOURN TIME 
For the contribution to mean sojourn time in state SiE and non-regenerative state 
occurs, before transiting to SjE, i.e., 
mij = 0


 t.qij(t) dt = -q’*ij(0)                                                      ……….(42) 

Therefore, 

m01 = b. 0


 t.(+p)e-(++)t dt   = b.
 2

p.



  

m02 = a. 0


 t.(+p)e-(++)t dt   = a.
 2

p.



  

m03 = q. 0


 t.e-(++)t dt    = q.
 2


 

m04 = .0


 t.e-(++)t dt    = 
 2


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m10 = 0


 t.e-(+)t g1(t) dt     m15 = .0


 t.e-(+)t G 1(t) dt 
m16 =  .0


 t.e-(+)t G 1(t) dt  m21 = 0


 t.e-(+)t G 2(t) dt   

m26 =.0


 t.e-(+)t G 2(t) dt   m27 =.0


 t.e-(+)t G 2(t) dt 
m31 = 0


 t.f(t) dt     m40 = 0


 t.h(t) dt  

m61 = 0


 t.h(t) dt     m71 = 0


 t.g1(t) dt  

m(5)11 = 



.[0


 t.g1(t) dt - 0


 t.e-(+)t g1(t) dt]                                              …..….(43-57) 

By the above expressions, it can be easily verified that  

m01 + m02 + m03 + m04  = 


1
 = 0 

m01 + m02  = 


1
.[1 - g*1(+)] = 1 

m21 + m26 + m27 = 


1
.[1 - g*2(+)] = 2 

m10 + m(5)11 + m16 =  
p.

 + 
 2


[1 – g*1(+)]  

m31 = 3  m40 = 4   m61 = 6  m71 = 7               ……...(58-65) 
 
MEAN TIME TO SYSTEM FAILURE (MTSF) 
To obtain the distribution function i(t) of the time to system failure with starting state S0. 
0(t) = Q01(t)$1(t) + Q02(t)$2(t) + Q03(t) + Q04(t) 
1(t) = Q10(t)$0(t) + Q15(t) + Q16(t)  
2(t) = Q21(t)$1(t) Q26(t) + Q27(t)                                   …..….(66-68) 
Taking Laplace Stieltjes transform of relations (66-68), we get 


~

0(s) = Q
~

01(s).
~

1(s) + Q
~

02(s).
~

2(s) + Q
~

03(s) + Q
~

04(s) 

 
~

1(s) = Q
~

10(s).
~

0(s) + Q
~

15(s) + Q
~

16(s)   


~

2(s) = Q
~

21(s).
~

1(s) + Q
~

26(s) + Q
~

27(s)                                  …..….(69-71) 

and solving the above equations (69-71) for 
~

0(s) by omitting the argument ‘s’ for 

brevity, we get 

 
~

0(s) = N1(s)/ D1(s)                                           …......(72) 

where  

N1(s) = Q
~

03 + Q
~

04 + Q
~

01( Q
~

15 + Q
~

16)+ Q
~

02( Q
~

26 + Q
~

27)+ Q
~

02 Q
~

21( Q
~

15 + Q
~

16)  

                                                                                                                ….......(73) 
and  

D1(s) = 1 – Q
~

01 Q
~

10 - Q
~

10 Q
~

21 Q
~

02                                          …......(74) 
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By taking the limit s0 in equation (72), one gets 
~

0(0) = 1, which implies that 
~

0(t) is a 

proper distribution function. Therefore, mean time to system failure when the initial state 
is S0, is 
        d        D’1(0) - N’1(0) 
E(T) = - 0(s)|s=0 =     = N1/D1                                                      ….….(75) 
       ds               D1(0)                 
where  
N1 = 0 + p011 + p022 + p02p211             
    = q +  + (p + )[1 – g*1(+) + {1 - g*1(+)}{1 - g*1(+)}a + p 
                                                                                                    ….….(76)  
and  
D1 = 1 – p01p10 – p10p21p02                             
    = q +  + (p + )[1 – g*1(+) + {1 - g*1(+)}{1 - g*1(+)}a  
                                                                             …..….(77) 
 
AVAILABILITY ANALYSIS  
System availability is defined as  
Ai(t) = Pr[Starting from state Si the system is available at epoch t without passing through 
any regenerative state] 
and  
Mi(t) = Pr[Starting from up state Si the system remains up till epoch t without passing 
through any regenerative up state] 
Thus, 
M0(t) = e-(++)t  M1(t) = e-(+)t G 1(t) 
M2(t) = e-(+)t G 2(t)  M3(t) = e-(+)t F (t)                                                        …….(78-81) 
Now, obtaining Ai(t) by using elementary probability argument; 
A0(t) = M0(t) + q01(t)A1(t) + q02(t)A2(t) + q03(t)A3(t) + q04(t)A4(t) 
A1(t) = M1(t) + q10(t)A0(t) + q(5)11(t)A1(t) + q16(t)A6(t) 
A2(t) = M2(t) +  q21(t)A1(t) + q26(t)A6(t) + q27(t)A7(t) 
A3(t) = q31(t)A1(t)    A4(t) = q40(t)A0(t)  
A6(t) = q61(t)A1(t)    A7(t) = q71(t)A1(t)                                …..….(82-88) 
Taking Laplace transform of above equation (82-88), we get, 
A*0(s) = M*0(s) + q*01(s).A*1(s) + q*02(s).A*2(s) + q*03(s).A*3(s)  
    + q*04(s).A*4(s) 
A*1(s) = M*1(s) + q*10(s).A*0(s) + q*(5)11(s).A*1(s) + q*16(s).A*6(s) 
A*2(s) = M*2(s) + q*21(s).A*1(s) + q*26(s).A*6(s) + q*27(s).A*7(s)  
A*3(s) = q*31(s).A*1(s)   A*4(s) = q*40(s).A*0(s)  
A*6(s) = q*61(s).A*1(s)   A*7(s) = q*71(s).A*1(s)                                                …..….(89-95) 
Now, solving the equations (89-95) for point wise availability A*0(s), by omitting the 
arguments ‘s’ for brevity, one gets 
         N2(s) 
A*0 (s) =   
         D2(s)                                                         …......(96) 
Where  
N2(s) = (1 - q*(5)11 - q*61q*61)M*0 + (q*01 + q*31q*03 + q*02q*21  
 + q*27q*71 - q*02q*26q*61)M*1 + (1 - q*(5)11 - q*61q*16)q*02M*2                                                               ……….(97) 
and  
D2(s) = 1 - q*(5)11 – (1 - q*(5)11 - q*61q*16)q*04q*40  - q*61q*16  
- q*01q*10 - q*03q*31q*01 – (q*21 + q*27q*71 + q*26q*61)q*02q*10                                      ……...(98) 
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By taking the limit s  0 in the relation (98), one gets the value of D2(0) = 0, therefore the 
steady state availability of the system when it starts operations from S0 is   
  
A0() = lim A0(t) = lim s. A0*(s) = N2(0)/D’2(0) = N2/D2               
                 t                s0                                                                                                                                                                                           …..(99)
            
Now, to find N2(0) we note that  
M*0(0) = 0


e-(++)t dt = 0  

M*1(0) = 0


 e-(+)t G 1(t) dt = 1  
M*2(0) = 0


 e-(+)t G 2(t) dt = 2  

M*3(0) = 0


 e-(+)t F (t) dt = 3                                                           ……...(100-103) 
Hence, using (18-29), (35-41) and (100-103), we get 
N2 = 0p04 + (1 - p04)1 + p10p022            
     =  + [1 – g*1(+)] + g*1(+)[ + b(p + ){1 - g*2(+)}]                                 ……...(104) 
and  
D2 = p10(m01 + m03 + m03 + m04) + (1 – p04(m01 + m16 + m(5)11)  
      + p02p10(m21 + m26 + m27) + p10p03m31 + [1 – p16 – p(5)11]p04m40  

        + (p16 – p04p16 + p02p16p26)m61 + p02p10p27m71  
    = [( + )g*1(+){( + )(1 - pm3 + m2)  
        + a(p + ){1 - g*2(+)}(1 + m2 + m1)}  
        + ( + ){(1 - g*1(+)(1 + ( + )m2) + ( )m1}]                                          ……….(105) 

 
BUSY PERIOD ANANLYSIS 
Let us define Wi(t) as the probability that the system is under repair by repair facility in 
state Si  E at time t without transiting to any regenerative state. Therefore  
W1(t) = e-(+)t G 1(t)    W3(t) = F (t) W4(t) = H (t) 
W6(t) = H (t)    W7(t) = G 1(t)                                            …….(106-110) 
Also let Bi(t) is the probability that the system is under repair by repair facility at time t, 
Thus the following recursive relations among Bi(t)’s can be obtained as ; 
B0(t) = q01(t)B1(t) + q02(t)B2(t) + q03(t)B3(t) + q04(t)B4(t) 
B1(t) = W1(t) + q10(t)B0(t) + q(5)11(t)B1(t) + q16(t)B6(t) 
B2(t) = q21(t)B1(t) + q26(t)B6(t) + q27(t)B7(t) 
B3(t) = W3(t) + q31(t)B1(t)  
B4(t) = W4(t) + q40(t)B0(t)  
B6(t) = W6(t) + q61(t)B1(t)  
B7(t) = W7(t) + q71(t)B1(t)                                             ……...(111-117) 
Taking Laplace transform of the equations (111-117), we get  
B*0(s) = q*01(s).B*1(s) + q*02(s).B*2(s) + q*03(s).B*3(s) + q*04(s).B*4(s) 
B*1(s) = W*1(s) + q*10(s).B*0(s) + q*(5)11(s).B*1(s) + q*16(s).B*6(s) 
B*2(s) = q*21(s).B*1(s) + q*26(s).B*6(s) + q*27(s).B*7(s)  
B*3(s) = W*3(s) + q*31(s).B*1(s)  
B*4(s) = W*4(s) + q*40(s).B*0(s)  
B*6(s) = W*6(s) + q*61(s).B*1(s)  
B*7(s) = W*7(s) + q*71(s).B*1(s)                                                                  ……...(118-124) 
and solving equations (118-124) for B*0(s), by omitting the argument ‘s’ for brevity we 
get; 
B*0(s) = N3(s)/D3(s)                                                                    ……...(125) 
Where D3(s) is same as D2(s) in (98) and  
N3(s) = -(1 - q*(5)11 - q*16q*61){1 – q*(++s)}/(++s)  
             + (1 - q*(5)11 - q*16q*61){q*03 F *(s) – q*04 H *(s)  
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             + q*02q*26 H *(s)- q*02q*27 G *1(s)}                                     ……...(126) 
In this steady state, the fraction of time for which the repair facility is busy in repair is 
given by 
B0 = lim B0(t) = lim s B*(s) = N3(0)/D’3(0) = N3/D3             
        t      s  0                                                                                                                                                                                      …......(127) 

where D3 is same as D2 in (105) and  
N3 = g1*(+)[p(+)m3 - (+)m2 + (m2 - m1)b(+p) 
       .{1 – g*2(+)} – ( +  + ){1 – g*2( + )}]                                                      ……...(128) 
Expected number of visits by the Repair facility 
Let we define, Vi(t) as the expected number of visits by the repair facility in (0,t] given that 
the system initially started from regenerative state Si at t=0. Then following recurrence 
relations among Vi(t)‘s can be obtained as; 
V0(t) = Q01(t)$[1 + V1(t)] + Q02(t)$V2(t) + Q03(t)$[1 + V3(t)]  
          + Q04(t)$[1 + V4(t)] 
V1(t) = Q10(t)$V0(t) + Q(5)11(t)$V1(t) + Q16(t)$V6(t) 
V2(t) = Q21(t)$[1 + V1(t)] + Q26(t)$V6(t) + Q27(t)$[1 + V7(t)] 
V3(t) = Q31(t)$V1(t)   V4(t) = Q40(t)$V0(t)  
V6(t) = Q61(t)$V1(t)   V7(t) = Q71(t)$V1(t)                                                 ……..(129-135) 
Taking Laplace stieltjes transform of the above equations (129-135) we get 

V
~

0(s) = Q
~

01(s).[1 + V
~

1(s)] + Q
~

02(s).V
~

2(s) + Q
~

03(s).[1 + V
~

3(s)]  

    + Q
~

04(s).[1 + V
~

4(s)] 

V
~

1(s) = Q
~

10(s).V
~

0(s) + Q
~

(5)11(s).V
~

1(s) + Q
~

16(s).V
~

6(s) 

V
~

2(s) = Q
~

21(s).[1 + V
~

1(s)] + Q
~

26(s).V
~

6(s) + Q
~

27(s).[1 + V
~

7(s)] 

V
~

3(s) = Q
~

31(s).V
~

1(s)  V
~

4(s) = Q
~

40(s).V
~

0(s)  

V
~

6(s) = Q
~

61(s).V
~

1(s)  V
~

7(s) = Q
~

71(s).V
~

1(s)                                                         ……...(136-142) 

and solving the equations (136-142) for V
~

0(s) by omitting the argument ‘s’ for brevity is  

 V
~

0(s) = N4(s)/D4(s)                                         ..........(143) 

where  

N4(s) = ( Q
~

01 + Q
~

02 + Q
~

04)(1 - Q
~

(5)11 - Q
~

16 Q
~

61) + Q
~

02( Q
~

21 + Q
~

26  

  + Q
~

27)(1 - Q
~

(5)11 - Q
~

16 Q
~

61)                                                         ……….(144) 

and  

D4(s) = 1 - Q
~

(5)11 – (1 - Q
~

(5)11 - Q
~

61 Q
~

16) Q
~

04 Q
~

40  - Q
~

61 Q
~

16  
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- Q
~

01 Q
~

10 - Q
~

03 Q
~

31 Q
~

01 – ( Q
~

21 + Q
~

27 Q
~

71 + Q
~

26 Q
~

61)
 
Q
~

02 Q
~

10                                                ……….(145) 

In steady state the number of visit per unit of time when the system starts after entrance 
into state S0 is ; 

V0 = lim [V0(t)/t] = lim s V
~

0(s) = N4/D4                                       ……....(146) 
        t              s  0 

where D4 is same as D2  in (105)  and  
N4 = (1 – p02)p10 + p02p10 
     = p10 = g*1(+)                                      ………..(147) 
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