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ABSTRACT 
The present study deals with a system comprises of two non-identical units in parallel configuration. 
Initially first unit is operative and the second is kept as cold standby. The first unit gets priority in 
operation as well as in repair while which the second unit is treated as ordinary. The first unit starts 
operation from higher level and then passes through middle and lower level before reaching to failure 
stage. Similarly, if the charging process is going on then an operative unit reaches from lower to 
middle and from middle to high level. The priority unit can reach to failure stage only from middle 
level. Probability that an operative unit will be in higher, middle and lower level of stages are fixed. A 
single repair facility is available in the system to repair the failed priority and ordinary unit. The 
failure time distributions of priority and ordinary units are exponential. Also, the rate of transition 
form higher to middle, middle to lower, lower to middle and middle to higher are exponential with 
different parameters. The repair time distributions for priority and ordinary units are general. 
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INTRODUCTION 
Several authors including have analysed many engineering systems by using different sets 
of assumptions. Most of them considered two identical unit system in which an operative 
unit fails directly without passing to and other intermediate stages. But in the real 
practical situation there exists some systems in which an operative unit passes through 
different stages before its complete failure. For example, we consider a system of inverter 
with battery and a generator then we can observe that a battery of an inverter passes 
from different level of charging such as high, middle and low before completely down 
stage. We can also see that use of inverter is more economical than generator so the 
priority is to be given to inverter with respect to operation and repair.  
Keeping the above view, we in this chapter analyse a two unit cold standby system in 
which first unit is priority and the second is treated as ordinary unit. 
Using regenerative point technique with Markov renewal process, the following reliability 
characteristics of interest are obtained.  
 
MODEL DESCRIPTION AND ASSUMPTIONS 
1. The system comprises of two non-identical units in parallel configuration. Initially 

first unit is operative and the second is kept as cold standby. The first unit gets 
priority in operation as well as in repair while which the second unit is treated as 
ordinary. 
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2. The first unit starts operation from higher level and then passes through middle and 
lower level before reaching to failure stage. Similarly, if the charging process is going 
on then an operative unit reaches from lower to middle and from middle to high level. 
The priority unit can reach to failure stage only from middle level. 

3. Probability that an operative unit will be in higher, middle and lower level of stages 
are fixed. 

4. A single repair facility is available in the system to repair the failed priority and 
ordinary unit.  

5. The failure time distributions of priority and ordinary units are exponential. Also, the 
rate of transition form higher to middle, middle to lower, lower to middle and middle 
to higher are exponential with different parameters.  

6. The repair time distributions for priority and ordinary units are general. 
  
NOTATION AND SYMBOLS 
NPOH : Normal priority unit kept as operative and in higher level 
NPOM : Normal priority unit kept as operative and in middle level 
NPOL : Normal priority unit kept as operative and in lower level 
NOO : Normal ordinary unit kept as operative 
NOCS : Normal ordinary unit kept as cold standby 
Fpr : Failed priority unit under repair 
For : Failed ordinary unit under repair 
Fowr : Failed ordinary unit waiting for repair 
1 : Constant rate of transition of normal unit from higher tomiddle  
                                level 
2 : Constant rate of transition of normal unit from middle to lower level 
3 : Constant rate of transition of normal unit from lower level to          
                                failed stage 
 : Constant failure rate of ordinary operative unit  
1 : Constant rate of transition of normal unit from middle to                       
                                higher level 
2 : Constant rate of transition of normal unit from lower to middle   
                                level 
3 : Constant rate of transition of normal unit from lower to higher level 
g(.), G(.) :  pdf and cdf of the distribution of time to repair priority unit  
h(.), H(.)  :  pdf and cdf of the distribution of time to repair ordinary unit  
p1 :  Probability that repaired priority unit goes into higher level 
p2 :  Probability that repaired priority unit goes into middle level 
p3 :  Probability that repaired priority unit goes into lower level 
 

Using the above notation and symbols the possible states of the system are 
 
Up States: 
S0  (NPOH, NOCS) S1  (NPOM, NOCS)  S2  (NPOL, FOCS) 
S3  (Fpr, NOO)  S5  (NPOH, For)   S6  (NPOM, For)  
 
Down States: 
S4  (Fpr, Fowr) 
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Fig. 1: The transitions between the various states 
 

TRANSITION PROBABILITIES 
Let T0 (=0), T1,T2,.... be the epochs at which the system enters the states Si  E. Let Xn 
denotes the state entered at epoch Tn+1  i.e. just after the transition of Tn. Then {Tn,Xn} 
constitutes a Markov-renewal process with state space E and  
Qik(t) = Pr[Xn+1 = Sk, Tn+1 - Tn  t | Xn = Si]                                                             (1) 
is semi Markov-Kernal over E. The stochastic matrix of the embedded Markov chain is 
P = pik = lim Qik (t) = Q()                                                                    (2)   
       t  
The non-zero elements of Qik(t) are given below: 
 pik = lim Qik(t)            
         t 

 p01 = 1                        p10 = 
12

1




 

 p12 = 
12

2




    p20 = 
323

3




 

 

 p21 = 
323

2




   p23 = 
323

3




 

 
 p30 = p1. g*()      p31 = p2. g*() 
 
 p32 = p3. g*()    p34 = 1 - g*() 
 
 p45 = p1     p46 = p2 
 
 p47 = p3     p50 = h*(1)   
 
 p56 =  1 - h*(1)    p61 =  h*(2+1) 
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 p65 = 
12

1




[1 - h*(2+1)]      p67 = 
12

2




[1 - h*(2+1)]  

 

 p72 = h*(3+2+3)  p74 = 
323

3




[1 - h*(3+2+3)]  

 

 p75 = 
323

3




[1 - h*(3+2+3)]  

 

 p76 = 
323

2




[1 - h*(3+2+3)]   

  
 p(4)35 = p1.[1 – G~ ()]   p(4)36 = p2. [1 – G~ ()] 
 
p(4)37 = p3. [1 – G~ ()]   

p(6)51 = 
21

1




[H~ (2) - H~ (1)]         

p(7)62 = 
32

2




[H~ (3) - H~ (2)] 

p(7)64 = 
32

2




[1 - H~ (3)] - 
32

3




[1 - H~ (2)] 

p(6,7)52 =    313221

21




[(1-2)H~ (3)  

     + (2-3)H~ (1) - (1-3)H~ (2)] 

p(6,7)54 =    313221

21




[{1 - H~ (3)}(1-2)]  

+    313221

32




[{1 - H~ (1)}(2-3)] 

-    313221

31




[{1 - H~ (2)}(1-3)]                                                              (3-33) 

 
Fro m th e above probabil it ies the fol lowin g rel at ion  can be easily  
verifiesas;  

p 01  =  1     p 10  +  p 1 2  =  1  
p 20  +  p 2 1  +  p 2 3 = 1      p 30  +  p 3 1  +  p 3 2  + p 3 4 = 1  

p 45  + p 4 6  +  p 47  =  1  

 p 50  +  p 5 6  =  1 =  p 6 1  + p 65  +  p 6 7   
p 72  + p 7 4  + p 7 5  +  p 7 6  = 1  = p 3 0  +  p 31  + p 3 2  +  p ( 4 ) 3 5  + p ( 4 ) 3 7                       
p 50  +  p ( 6 ) 5 1  + p ( 6 , 7) 5 2  + p ( 6 , 7 ) 5 4  = 1= p 6 1  +  p ( 7) 6 2  +  p ( 7 ) 6 4  + p 6 5       (34-41 ) 

 
MEAN SOJOURN TIMES 
The mean time taken by the system in a particular state Si before transiting to any other 
state is known as mean sojourn time and is defined as- 
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 i = 0


 P[T>t] dt                                                                               (42) 
Using this we can obtain the following expression: 

 0 = 
1

1


   1 = 
12

1


  2 = 
323

1


 

 

 3 = 

1

[1 - g*()]  4 = 0


 t.g(t) dt  

 5 = 
1

1


 [1 - h*(1)] 6 = 
12

1


[1 - h*(2+1)]  

 7 = 
323

1


[1 - h*(3+2+3)]                                            (43-50) 

 
RELIABILITY OF THE SYSTEM 
To obtain Ri(t), the probability that starting from Si the system will not fail upto time t, the 
failed state S4 is taken to be absorbing state. Then by the probabilistic arguments 
following recursive relations can be obtained 
R0(t) = Z0(t) +  q01(t)©R1(t)  
 
R1(t) = Z1(t) +  q10(t)©R0(t) +  q12(t)©R2(t) 
 
R2(t) = Z2(t) +  q20(t)©R0(t) +  q21(t)©R1(t) +  q23(t)©R3(t) 
 
R3(t) = Z3(t) +  q30(t)©R0(t) +  q31(t)©R1(t) +  q32(t)©R2(t)  
                              (51-54) 
 
Taking Laplace Stieltjes transform of relations and solving it for R*0(s) we get  
 
R0*(s) = N1(s)/ D1(s)                                                                  (55) 
Where, 
N1(s) = {(1 – q*23q*32) - q*12(q*23q*31 + q*21)}Z*0  
 
   + q*01Z*1(1 - q*23q*32) + q*01q*12Z*2                                                                                            (56) 
 
and  
D1(s) = (1 – q*23q*32) - q*12(q*23q*31 + q*21) - q*01q*10(1 - q*23q*32)  
 
   - q*01q*12(q*23q*30 + q*20)                                                                 (57)  
Now, 
D1(0) = 1 – p23p32 - p23p31p12 - p21p12 - p01p10 - p01p10p23p32   
 
p01p12p23p30 - p01p12p20)           
 
= (1 – p23p32)(1 – p10) - p12(p20 + p21 + p23p30 + p23p31)  
 
= (1 – p23p32)p12 – p12(p20 + p21 + p23p30 + p23p31)  
 
= p12[1 - p23p32 – p20 – p21 - p23p30 - p23p31]  
 
= 0                                                       (58) 
Now, the coefficient of mij’s in D’1(0) are 
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        mij Coefficients 
        m01 p10(1 – p23p32) + p12(p20 + p23p30) 
        m10 1 – p23p32 
        m12 1 – p23p32 

        m20 p12 
        m21 p12 
        m23 p12 
        m30 p12p23 
        m31 p12p23 
        m32 p12p23 

   
Then, 
 
D’1(0) = m01{ p10(1 – p23p32) + p12(p20 + p23p30)}  
 
             + (m10 + m12)(1 – p23p32) + p12(m20 + m21 + m23) 
 
     + p12p23(m30 + m31 + m32) 
 
= 0{ p10(1 – p23p32) + p12(p20 + p23p30)} + 1(1 – p23p32)  
 
   + p122  + p12p233                                                                  (59) 
 
Therefore, the reliability of the system is  
 
 R*(0) = N1/D1                                                     (60) 
Where 
 
N1 = N1(0) = {1 – p23p32 - p23p31p12 - p21p12}0 + 1(1 - p23p32)  
 
 + p122                                                                                                 (61) 
 
and D1  is same as in (59). 
 
AVAILABILITY ANALYSIS   
System availability is defined as  
Ai(t) = Pr[Starting from state Si the system is available at epoch t without passing through 
any regenerative state] 
and  
Mi(t) = Pr[Starting from up state Si the system remains up till epoch t without passing 
through any regenerative up state] 
Thus, 
M0(t) = e-1t     M1(t) = e-(2+1)t 
 
M2(t) = e-(3+2+3)t    M3(t) = e-t G (t) 
 
M5(t) = e-1t H (t)   M6(t) = e-(2+1)t H (t) 
 
M7(t) = e-(3+2+3)t H (t)                                             (62-68) 
 
Now, obtaining Ai(t) by using elementary probability argument; 
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A0(t) = M0(t) + q01(t)A1(t)  
 
A1(t) = M1(t) + q10(t)A0(t) + q12(t)A2(t)  
 
A2(t) = M2(t) + q20(t)A0(t) + q21(t)A1(t) + q23(t)A3(t)  
 
A3(t) = M3(t) + q30(t)A0(t) + q31(t)A1(t) + q32(t)A2(t)  
 
  + q(4)35(t)A5(t) + q(4)36(t)A6(t) + q(4)37(t)A7(t) 
 
A5(t) = M5(t) + q50(t)A0(t) + q(6)51(t)A1(t) + q(6,7)52(t)A2(t)  
 
A6(t) = M6(t) + q65(t)A5(t) + q(7)62(t)A2(t) + q61(t)A1(t) 
 
A7(t) = M7(t) + q72(t)A2(t) + q75(t)A5(t) + q76(t)A6(t)                                                  (69-75) 
 
Taking Laplace transform of above equation (69-75),and solving for pointwise availability 
A*0(s), we get 
                                           N2(s) 
 A*0 (s) =   
                D2(s)                                                    (76) 
 
N2(s) = (M*0 + q*01M*1).A + q*01q*12(M*2 + B) - M*0q*12D                                                          (77) 
 
and  
 
D2(s) = (1 - q*01q*10).A - q*12.D - q*12.C                                                                (78) 
 
By taking the limit s0 in the relation (153), one gets the value of D2(0) = 0, therefore the 
steady state availability of the system when it starts operations from S0 is   
  
A0() = lim A0(t) = lim s. A0*(s) = N2(0)/D’2(0) = N2/D2                                                              (79) 
             t               s0            
 
Where 
 
N2 = N2(0) = (0 + 1).[1 – {(p32 + p35p52 + p36p62 + p37p72)  
 
+ p52(p36p65 + p37p75) + p37p76(p65p52 + p62)}p23]  
 
+ p12(2 + p23{(3 + p355 + p366 + p377)  
 
+ 5(p36p65 + p37p75) + p37p76(6 + p655})  
 
- 0p12[{(p31 + p35p51 + p36p61) + (p36p65 + p37p75)p51  

 
+ p37p76(p65p51 + p61}p23 + p21]                                                                               (80) 
             
and using mi = mij, we have 
 
D2 =    [1 – {(p32 + p35p52 + p36p62 + p37p72)  
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+ p52(p36p65 + p37p75) + p37p76(p65p52 + p62)}p23](p10m0 + m1)   
 
+ p12m2 + p12p23m3 + p12p23{(p36p65 + p37p75) + p35}  
 
+ p12p23[{(p36 + p37p76)m6 + p12p23p37m7                                                               (81) 
 
BUSY PERIOD ANANLYSIS 
Let us define Wi(t) as the probability that the system is under repair by repair facility in 
state Si  E at time t without transiting to any regenerative state. Therefore  
W1(t) = e-1t    W2(t) = e-(2+3)t    
 
W3(t) = G (t)    W5(t) = H (t)    
 
W6(t) = e-1t H (t)   W7(t) = e-(2+3)t H (t)                                            (82-87) 
 
Also let Bi(t) is the probability that the system is under repair by repair facility at time t, 
Thus the following recursive relations among Bi(t)’s can be obtained as ; 
B0(t) = q01(t)B1(t)  
 
B1(t) = W1(t) + q10(t)B0(t) + q12(t)B2(t)  
 
B2(t) = W2(t) + q20(t)B0(t) + q21(t)B1(t) + q23(t)B3(t)  
 
B3(t) = W3(t) + q30(t)B0(t) + q31(t)B1(t) + q32(t)B2(t)  
 
  + q(4)35(t)B5(t) + q(4)36(t)B6(t) + q(4)37(t)B7(t) 
 
B5(t) = W5(t) + q50(t)B0(t) + q(6)51(t)B1(t) + q(6,7)52(t)B2(t)  
 
B6(t) = W6(t) + q65(t)B5(t) + q(7)62(t)B2(t) + q61(t)B1(t) 
 
B7(t) = W7(t) + q72(t)B2(t) + q75(t)B5(t) + q76(t)B6(t)                                                  (88-94) 
Taking Laplace transform of above equation (88-94), and solving for B*0(s), we get 
B*0(s) = N3(s)/D3(s)                                                                                (95) 
Where D3(s) is same as D2(s) in (153) and  
 
N3(s) = q*01W*1[1 – {(q*32 + q*35q*52 + q*36q*62 + q*37q*72)  
 
+ q*52(q*36q*65 + q*37q*75) + q*37q*76(q*65q*52 + q*62)}q*23]  
+ q*01q*12(W*2 + q*23{(W*3 + q*35W*5 + q*36W*6 + q*37W*7)  
 
+ W*5(q*36q*65 + q*37q*75) + q*37q*76(W*6 + q*65W*5})  
 
- q*12[{(q*31 + q*35q*51 + q*36q*61) + (q*36q*65 + q*37q*75)q*51  

 
+ q*37q*76(q*65q*51 + q*61}q*23 + q*21]                                                                               (96) 
 
In this steady state, the fraction of time for which the repair facility is busy in repair is 
given by 
B0 = lim B0(t) = lim s B*(s) = N3(0)/D’3(0) = N3/D3                                                              (97) 
        t            s  0 
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where D3 is same as D2 in (156) and  
N3 =  w1[1 – {(p32 + p35p52 + p36p62 + p37p72) + p52(p36p65 + p37p75)  

+ p37p76(p65p52 + p62)}p23] + p01p12(w2 + p23{(w3 + p35w5  

+ p36w6 + p37w7) + w5(p36p65 + p37p75) + p37p76(w6 + p65w5})  

- p12[{(p31 + p35p51 + p36p61) + (p36p65 + p37p75)p51   

+ p37p76(p65p51 + p61}p23 + p21]                                                                                      (98) 

 
EXPECTED NUMBER OF VISITS BY THE REPAIRMAN  
Let we define, Vi(t) as the expected number of visits by the repairman in (0,t] given that 
the system initially started from regenerative state Si at t=0. Then following recurrence 
relations among Vi(t)‘s can be obtained as; 
V0(t) = Q01(t)$[1 + V1(t)]  
 
V1(t) = Q10(t)$V0(t) + Q12(t)$V2(t)  
 
V2(t) = Q20(t)$V0(t) + Q21(t)$V1(t) + Q23(t)$V3(t)  
 
V3(t) = Q30(t)$V0(t) + Q31(t)$V1(t) + Q32(t)$V2(t) + Q(4)35(t)$V2(t)  
 
  + Q(4)36t)$V6t) + Q(4)37(t)$V7(t) 
 
V5(t) = Q50(t)$V0(t) + Q(6)51t)$V1(t) + Q(6,7)52t)$V2(t) 
 
V6(t) = Q65(t)$V5(t) + Q(7)62(t)$V7(t) + Q61(t)$V1(t) 
 
V7(t) = Q72(t)$V2(t) + Q75(t)$V5(t) + Q76(t)$V6(t)                                                     (99-405) 

Taking Laplace stieltjes transform of the above equations (99-105) and solving for V
~

0(s) 

we get 

V
~

0(s) = N4(s)/D4(s)                                                                 (106) 

Where 

N4(s) = Q
~

01[1 – {( Q
~

32 + Q
~

35 Q
~

52 + Q
~

36 Q
~

62 + Q
~

37 Q
~

72)  

+ Q
~

52( Q
~

36 Q
~

65 + Q
~

37 Q
~

75) + Q
~

37 Q
~

76( Q
~

65 Q
~

52 + Q
~

62)} Q
~

23]  

- Q
~

01 Q
~

12[{( Q
~

31 + Q
~

35 Q
~

51 + Q
~

36 Q
~

61)  

+ ( Q
~

36 Q
~

65 + Q
~

37 Q
~

75) Q
~

51 + Q
~

37 Q
~

76( Q
~

65 Q
~

51 + Q
~

61} Q
~

23  

+ Q
~

21]                                                                         (107) 

and  D4(s) = (1 - Q
~

01 Q
~

10).A - Q
~

12.D - Q
~

12.C                                               (108) 
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In steady state the number of visit per unit of time when the system starts after entrance 
into state S0 is ; 

V0 = lim [V0(t)/t] = lim s V
~

0(s) = N4/D4                                                  (109) 
        t               s  0 

where D4 is same as D2  in (81)  and  
N4 = [1 – {(p32 + p35p52 + p36p62 + p37p72) + p52(p36p65 + p37p75)  
 
+ p37p76(p65p52 + p62)}p23] - p01p12[{(p31 + p35p51 + p36p61)  
 
+ (p36p65 + p37p75) p51 + p37p76(p65p51 + p61}p23 + p21]                                                                (110) 
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