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ABSTRACT 
This chapter investigates a system consists of two identical units in which one is operative and the 
other is kept as warm standby. Whenever first unit fails the second unit becomes operative 
instantaneously. If both the units of the system are alive i.e. first unit is in operating position and the 
second is as standby, and if the operative unit works continuously up to a random amount of time 
then send this unit to preventive maintenance and in such a situation the standby unit at once comes 
into operation. This process of preventive maintenance is done by operator himself in which the unit 
will be in completely rest and some oiling and complete checkup of the unit is performed. There is no 
repair facility in the system but at the time of need an ordinary repairman will be called to attend the 
failed unit. If the ordinary repairman enters in the system within fixed amount of time known as 
patience time then it is O.K. otherwise an expert repairman will be called. Once any of the repairman 
enters in the system he will complete all the jobs related to the system. After the repair a unit works as 
good as new. The distribution of time to complete preventive maintenance follows exponential while 
the distributions of failure time, repair times and the time after continuous working, an operative unit 
is sent for preventive maintenance are arbitrary. 
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INTRODUCTION 
Many authors including working in the field of reliability have analysed various 
engineering systems by assuming different sets of assumptions. Most of them analysed 
two unit standby systems with the assumption that a single repair facility is available in 
the system always and whenever an operative unit fails it comes into repair immediately.  
But there exists many practical situations in which it is quite reasonable that the repair 
facility should not be available in the permanent capacity. The repairman should be call at 
the time of need on job basis. 
Keeping the above view, we in this chapter analysed a two unit warm standby system 
with two types of repair facilities known as ordinary and expert repairman which are 
called at the time of need. 
Using regenerative point technique with Markov renewal process, the following reliability 
characteristics of interest are obtained. 
 
MODEL DESCRIPTION AND ASSUMPTIONS 
The system consists of two identical units in which one is operative and the other is kept 
as warm standby.  
1. Whenever first unit fails the second unit becomes operative instantaneously. 
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2. If both the units of the system are alive i.e. first unit is in operating position and the 
second is as standby, and if the operative unit works continuously up to a random 
amount of time then send this unit to preventive maintenance and in such a situation 
the standby unit at once comes into operation. This process of preventive 
maintenance is done by operator himself in which the unit will be in completely rest 
and some oiling and complete checkup of the unit is performed. 

3. There is no repair facility in the system but at the time of need an ordinary repairman 
will be called to attend the failed unit. If the ordinary repairman enters in the system 
within fixed amount of time known as patience time then it is O.K. otherwise an expert 
repairman will be called. Once any of the repairman enters in the system he will 
complete all the jobs related to the system. 

4. After the repair a unit works as good as new. 
5. The distribution of time to complete preventive maintenance follows exponential 

while the distributions of failure time, repair times and the time after continuous 
working, an operative unit is sent for preventive maintenance are arbitrary. 

 
NOTATION AND SYMBOLS 
NO  : Normal unit kept as operative 
NS  : Normal unit kept as warm standby 
Npm  : Normal unit under preventive maintenance 
NOC  : Operation of Normal unit is continued from earlier state 
Fro  : Failed unit under repair by ordinaryrepairman 
Fre  : Failed unit under repair by expert repairman 
FRO : Repair of failed unit by ordinary repairman is continued from 

earlier state 
FRE : Repair of failed unit by expert repairman is continued from earlier 

state 
Fwro  : Failed unit waiting for repair by ordinary repairman 
Fwre  : Failed unit waiting for repair by expert repairman 
  : Constant rate of completing preventive maintenance 
f1(.), F1(.)  :  pdf and cdf of failure time distribution of operative unit  
f2(.), F2(.)  :  pdf and cdf of failure time distribution of warm standby unit  
g1(.), G1(.)  :  pdf and cdf of time to complete repair of a failed unit by ordinary 

repairman 
g2(.), G2(.)  :  pdf and cdf of time to complete repair of a failed unit by expert 

repairman 
h(.), H(.)  :  pdf and cdf of patience time for ordinary repairman 
w(.), W(.)  :  pdf and cdf of availability time of ordinary repairman 
k(.), K(.)  :  pdf and cdf of time after completing which an operative unit is sent 
for preventive maintenance using the above notation and symbols the possible states of      
the system are 
 

Up States: 
S0    (NO ,  N S)    S1    (NO ,  Fwr o )   S2    (NO ,  N p m )  
S3    (NO C ,  F r o )  S4    (NO C ,  F r e )  S8    (NO ,  Fr e )   
S1 0    (N O ,  F r e)  S1 1    (N O ,  F r o )  S1 2    (N O C ,  N S )  
 

Down States: 
S5    (F r e ,  Fw r e )   S6    (FR O ,  Fw r o )   S7    (FR E ,  Fw r e ) 
S9    (Np m,  F r e )  
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DOWN  STATE

UP STATE

S0 S1 S3 S5

S2 S12 S11 S6

S8

S9 S10 S4 S7

 
 

Fig. 1: The transitions between the various states 
 

TRANSITION PROBABILITIES 
Let T0 (=0), T1,T2,.... be the epochs at which the system enters the states Si  E. Let Xn 
denotes the state entered at epoch Tn+1 i.e. just after the transition of Tn. Then {Tn,Xn} 
constitutes a Markov-renewal process with state space E and  
Q i k(t) = Pr[X n + 1  =  Sk ,  T n+ 1  -  Tn    t  |  X n =  S i ]                                              (1 )  
is semi Mar kov -Kern al  ove r E.  Th e stoc hast ic matrix of  the embedded  
Markov chain is 

P  = p i k =  Q()                                                 (2)   
The n on-ze ro elements of  Q i k (t) are  gi ven below ;  
p01 = 0


 K (t) F 1(t) f2(t) dt + 0


 K (t) F 2(t) f1(t) dt 

p02 = 0

 F 1(t) F 2(t) k(t) dt  

p15 = 0

 W (t) H (t) f1(t) dt 

p29 = f*1()   
p58 = 1 
p92 = g*2()   
p(4)17 = 0


0t W (w) dH(w) G 2(t-w) dF1(t)   

p(3)16 = 0


0t H (w) dW(w) G 1(t-w) dF1(t) 
p(12)21 = 0


0t e-w dw K (t-w) dF1(t)  

p(12)22 =  0


0t e-w dw F 1(t) dK(t-w)  
p(12)18 = 0


0t dG2(w) K (t-w) dF1(t)  

p(12)82 = 0


0t dG2(w) F 1(t) dK(t-w)  
p(7)88 = 0


 f1(t) dG2(t)  
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p(12)11,1 = 0


0t dG1(w) K (t-w) dF1(t)  
p(12)11,2 = 0


0t dG1(w) F 1(t) dK(t-w)  

p(6)11,11 = 0


 f1(t) dG1(t)  
p(4,12)12 = 0


0w0t dH(u) W (u) dG2(w-u) F 1(t) dK(t-w)  

p(3,12)12 = 0


0t0w H (t) dW(t) dG1(w-t) F 1 dK(t-w) 
p(4,12)11 = 0


0t0w W (u) dH(u) dG2(w-u) K (t-w) dF1(t) 

p(3,12)11 = 0


0t0w H (u) dW(u) dG1(w-u) K (t-w) dF1(t) 
p(4,7)18 = 0


0t0w W (u) dH(u) dF1(w) dG2(t-u) 

p(3,6)1,11 = 0


0t0w H (u) dW(u) dF1(w) dG1(t-u) 
p(10,12)92 = 0


0t0w e-u du dG2(w) F 1(t-u) dK(t-w) 

p(10,7)98 = 0


0t0w e-u du dF1(w-u)dG2(u)                                                            (3-26)
   
MEAN SOJOURN TIME 
The mean time taken by the system in a particular state Si before transiting to any other 
state is known as mean sojourn time and is defined as 
 i = 0


 P[T>t] dt                                                                               (27) 

Using this we can obtain the following expression: 
0 = 0

 F 1(t) F 2(t) K (t) dt                1 = 0
 W (t) F 1(t) H (t) dt  

 
2 = 0


e-t F 1(t) dt                          5 = 0


 G 2(t) dt  

 
8 = 0


 F 1(t) G 2(t) dt                      9 = 0


e-t G 2(t) dt  

 
11 = 0


 F 1(t) G 1(t) dt                                                            (28-34) 

 
MEAN TIME TO SYSTEM FAILURE (MTSF) 
To obtain the distribution function i(t) of the time to system failure with starting state S0. 
0(t) = Q01(t)$1(t) + Q02(t)$2(t) 

 1(t) = Q15(t) + Q(3)16(t) + Q(4)17(t) + Q(4,12)12(t)$2(t)  

  + Q(3,12)12(t)$2(t) + Q(4,12)11(t)$1(t) + Q(3,12)11(t)$1(t) 

2(t) = Q29(t) + Q(12)21(t)$1(t) + Q(12)22(t)$2(t)                                          (35-37) 

Taking Laplace Stieltjes transform of relations and solving for 
~

0(s) (35-37), weget 


~

0(s) = N1(s)/ D1(s)                                                                  (38) 

where  

N1(s) = ( Q
~

15 + Q
~

(3)16 + Q
~

(4)17)[ Q
~

01(1 - Q
~

(12)22) + Q
~

02 Q
~

(12)21]  

+ Q
~

29[ Q
~

01( Q
~

(4,12)12 + Q
~

(3,12)12) + Q
~

02(1 - Q
~

(4,12)11 - Q
~

(3,12)11)]      (39) 

and  
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D1(s) = (1 - Q
~

(4,12)11 - Q
~

(3,12)11)(1 - Q
~

(12)22)  

   – Q
~

(12)21( Q
~

(4,12)12 + Q
~

(3,12)12)                                                                                       (40) 

By taking the limit s0 in equation (81), one gets   
~

0(0) = 1, which implies that 
~

0(t) is 

a proper distribution function.  
        d       D’ 1 (0 ) -  N’ 1 (0)  
E (T)  =  -      0 (s)| s = 0  =      =  N1/ D1                     (41) 
       d s          D1 (0)                  
where,  
 
N1 = [p(12)21(p15 + p(3)16 + p(4)17) + p29(1 – p(4,12)11 - p(3,12)11)]0  
        + (p(12)21 + p01p29)[m15 + m(3)16 + m(4)17 + m(4,12)12 + m(3,12)12  
        + m(3,12)11+ m(4,12)11] + [p(4,12)12 + p(3,12)12 + p02(p15 + p(3)16  
        + p(4)17)][m29 + m(12)21 + + m(12)22]                                                                (42) 
and  
D1 = (1 - p(4,12)11 - p(3,12)11)(1 - p(12)22) – p(12)21(p(4,12)12 + p(3,12)12)                    (43) 
 
AVAILABILITY ANALYSIS   
System availability is defined as  
Ai(t) = Pr[Starting from state Si the system is available at epoch t without passing through 
any  regenerative state] and  
Mi(t) = Pr[Starting from up state Si the system remains up till epoch t without passing 
through any regenerative up state] 
Thus, 
M0(t) = F 1(t)F 2(t) K (t)     
M1(t) = F 1(t)[ W (t).H (t) + 0t H(u) dW(u) G 1(t-u)  
                + 0t W (u)dH(u)G 2(t-u)]  
      + [0t0wdW(u)H (u)dG1(w-u) K (t-w)]F 1(t)  
   + [0t0w dH(u) W (u) dG2(w-u) K (t-w)]F 1(t) 
M2(t) = M8(t) = M11(t) = F 1(t)                                                                         (44-46) 
 
Now, obtaining Ai(t) by using elementary probability argument; 
A0(t) = M0(t) + q01(t)A1(t) + q02(t)A2(t) 
 A1(t) = M1(t) + q(3,12)11(t)A1(t) + q(4,12)11(t)A1(t)  
  + q(3,12)12(t)A2(t) + q(4,12)12(t)A2(t) + q(4,7)18(t)A8(t)  
  + q(3,6)1,11(t)A11(t) + q15(t)A5(t) 
A2(t) = M2(t) + q(12)21(t)A1(t) + q29(t)A9(t) + q(12)22(t)A2(t)  
A5(t) = q58(t)A8(t)  
A8(t) = M8(t) + q(12)81(t)A1(t) + q(12)82(t)A2(t) + q(7)88(t)A8(t) 
A9(t) = q(10,12)91(t)A1(t) + q92(t)A2(t) + q(10,12)92(t)A2(t) 
   + q(10,7)98(t)A8(t) 
A11(t) = M11(t) + q(12)11,1(t)A1(t) + q(12)11,2(t)A2(t)  
  + q(6)11,11(t)A11(t)                                                             (47-53) 
  
Taking Laplace transform of above equation (47-53), and solving for A*i(s) we get, 
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A*0(s) = [k0M*0(s) + k1M*1(s) + k2M*2(s) + k8M*8(s)  
            + k11M*11(s)]/k0                                                                                    (54)       
The steady-state availability of the system is  
A0() = lim A0(t) = lim s. A0*(s) = N2(0)/D’2(0) = N2/D2                                                            (55) 
           t               s0            
N2 = [(1 – p88){p92 + (1 – p22)} – p29p98p82}M1 + (1 – p88) 
       .[p12(1 – p11,11) + p1,11p11,2 + p11[p29p92 – (1 – p22)}]m  
       + (1 – p11,11)(p15p58  + p18)[p82 + p29p92 – (1 – p22)]m  
       + p29p98[p1,11(p82 + p11,2) – p12(1 – p11,11)]m                                                                             (56) 
and  
D2 = [(1 – p88)p92 + (1 – p22)– p29p98p82][m11 + m12 + m15  
+ m(4,7)18 + m(3,6)1,11) + [(1 – p88){p12(1 – p11,11) + p1,11p11,2}  

          + p82(1 – p11,11)(p15p58  + p18)][m29 + m(12)21 + m(12)22]  

          + p15(1 – p11,11)[p29(p91p82 – p81p92) + p82p21  
+ p81(1 – p22)]5 + (1 – p11,11)(p15p58  + p18){p29p92  

- (1 – p22)} - p29p98{p12(1 – p11,11) + p1,11p11,2}] 
 .[m(12)18 + m(12)82 + m(7)88] + p29[(1 – p11,11){p12(1 – p88)  
+ p82(p15p58 + p18)} + p1,11p11,2(1 – p88)][m(10,12)91 + m92  
+ m(10,12)92 +  m(10,7)98] + [p11(1 – p88)p29p92  
- p11(1 – p22)(1 –p88) + p29p98p82p1,11][m(12)11,1 + m(12)11,2  

+ m(6)11,11)]                                                             (57) 
 
BUSY PERIOD ANANLYSIS 
(a) Let Bi(t) is the probability that the system is under repair by ordinary repair facility at 
time t, Thus the following recursive relations among Bi(t)’s can be obtained as ; 
B0(t) = q01(t)B1(t) + q02(t)B2(t) 
 B1(t) = W1(t) + q(3,12)11(t)B1(t) + q(4,12)11(t)B1(t)  
+ q(3,12)12(t)B2(t) + q(4,12)12(t)B2(t) + q(4,7)18(t)B8(t)  
+ q(3,6)1,11(t)B11(t) + q15(t)B5(t) 
B2(t) = q(12)21(t)B1(t) + q29(t)B9(t) + q(12)22(t)B2(t)  
B5(t) = q58(t)B8(t)  
B8(t) = q(12)81(t)B1(t) + q(12)82(t)B2(t) + q(7)88(t)B8(t) 
B9(t) = q(10,12)91(t)B1(t) + q92(t)B2(t) + q(10,12)92(t)B2(t) 
   + q(10,7)98(t)B8(t) 
B11(t) = W11(t) + q(12)11,1(t)B1(t) + q(12)11,2(t)B2(t)  
  + q(6)11,11(t)B11(t)                                                                                   (58-64) 
 
 Taking Laplace transform of above equations (58-64) and solving for B*0(s), we get, 
B0 = lim B0(t) = lim s B*(s) = N3(0)/D’3(0) = N3/D3                                                              (65) 
        t            s  0     

N3 = [(1 – p88){p92 + (1 – p22)} – p29p98p82]w1  

+ [p11(1 – p88){p29p92 – (1 – p22)} + p29p98p82p11,11]n1                                                              (66) 
and D3 is same as D2 in (57).  
(b) Let Ri(t) is the probability that the system is under repair by ordinary repair facility at 
time t, Thus the following recursive relations among Ri(t)’s can be obtained as ; 
R0(t) = q01(t)R1(t) + q02(t)R2(t) 
 R1(t) = W1(t) + q(3,12)11(t)R1(t) + q(4,12)11(t)R1(t)  
+ q(3,12)12(t)R2(t) + q(4,12)12(t)R2(t) + q(4,7)18(t)R8(t)  
+ q(3,6)1,11(t)R11(t) + q15(t)R5(t) 
R2(t) = q(12)21(t)R1(t) + q29(t)R9(t) + q(12)22(t)R2(t)  
R5(t) = W5(t) + q58(t)R8(t)  
R8(t) = W8(t) + q(12)81(t)R1(t) + q(12)82(t)R2(t) + q(7)88(t)R8(t) 
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R9(t) = W9(t) + q(10,12)91(t)R1(t) + q92(t)R2(t)  
+ q(10,12)92(t)R2(t) + q(10,7)98(t)R8(t) 
R11(t) = q(12)11,1(t)R1(t) + q(12)11,2(t)R2(t)  
  + q(6)11,11(t)R11(t)                                                                           (67-73) 
 
Now, taking Laplace transform of above equations (67-73), and solving for R*0(s), we get, 
R0 = lim R0(t) = lim s R*(s) = N4(0)/D’4(0) = N4/D4                                                              (74) 
        t            s  0 

N4 = [(1 – p88){p92 + (1 – p22)} – p29p98p82]w1 + p15(1 – p11,11) 
.[(1 – p22)(1 – p88) + p29[p98p82 + p92(1 – p88)}]n2  
+ [(1 – p11,11)(p15p58 + p18){p29p92 – (1 – p22)  
- p29p98{p12(1 – p11,11) + p11,11p11,2}]n2 + [(1 – p11,11) 
.{p12(1 – p88) + p82(p15p58 + p18)} + p11,11p11,2(1 – p88)]p29w9                                                      (75) 
and D4 is same as D2 in (57). 
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