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ABSTRACT 

The present paper deals with the Stochastic Analysis of a Priority Unit System in which first unit is of 
higher cost and production capacity so it is considered as priority unit. The priority unit gets priority 
for repair, final trial, post repair and operation if both the units are in Normal operative mode. Also 
after each repair the repaired unit is sent for final trial to test whether the repaired unit is working 
properly with its full efficiency or not. If it is found to be inefficient then send it for post repair. 
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INTRODUCTION 
The purpose of this paper is to present a two unit cold standby system in which first unit 
is of higher cost and production capacity so it is considered as priority unit. The priority 
unit gets priority for repair, final trial, post repair and operation if both the units are in 
Normal operative mode. Also after each repair the repaired unit is sent for final trial to 
test whether the repaired unit is working properly with its full efficiency or not. If it is 
found to be inefficient then send it for post repair. Using regenerative point technique 
with Markov renewal process, the following reliability characteristics of interest are 
obtained. 
 
MODEL DESCRIPTION AND ASSUMPTIONS 
1. The system consists of two units which are non-identical. Initially first unit is                      

operative and the second is kept as cold standby.  
2. Whenever first unit fails the second unit becomes operative instantaneously by an 

automatic transfer switch, which is always perfect.  
3. The first unit is of very high cost and production capacity so it is treated as priority 

unit and the second unit is treated as non-priority unit.  
4. After each repair of failed unit, the repaired unit is sent for “final trial” in which the 

unit is kept as operative for a fixed amount of time is known as “critical time”. If the 
repaired unit operates successfully with its full efficiency without any failure then 
send it for operation or cold standby otherwise for post repair. The probability that 
the repaired unit will transferred as operative after final trial is fixed.  

5. The first unit gets priority in operation (when both the units are alive), repair, final 
trial and post repair.  

6. A single repair facility is considered in the system for repair, final trial and post repair.   
7. Failure time distributions of first and second units are exponential with different 

failure rates, while the distributions of completing repair, final trial and post repair 
are assumed to be general. 
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NOTATION AND SYMBOLS 
 

Fig. 1: Transitions between the various states 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N1O : Normal Ist unit kept as operative 
N2O : Normal IInd unit kept as operative 
N2CS : Normal IInd unit kept as cold standby 
F1r : Failed Ist unit under repair 
F2r : Failed IIndt unit under repair 
F1ft : Repaired Ist unit under final trial 
F2ft : Repaired IInd unit under final trial 
F1pr : Failed Ist unit under post repair  
F2pr : Failed IInd unit under post repair  
F2wr : Failed IInd unit is waiting for repair  
F2wft : Repaired IInd unit waiting for final trial 
F2wpr : Failed IInd unit waiting for post repair  
 : Constant failure rate of Ist unit  
 : Constant failure rate of IInd unit 
fi(.), Fi(.) :  pdf and cdf of time to complete repair of ith (i=1,2) failed unit  
gi(.), Gi(.): pdf and cdf of time to complete final trial ith (i=1,2) repaired unit 
hi(.), Hi(.): pdf and cdf of time to complete post repair of ith (i=1,2) failed unit  
p           :         Probability that the repaired unit will be transferred as operating unit 

after completing “final trial” 
q           :      Probability that the repaired unit will be sent for post repair after 

completing “final trial” 
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m1 : Mean time for completing repair   
m2 : Mean time for completing final trial  
m3 : Mean time for completing post repair 
Using the above notation and symbols the possible states of the system are 
Up States   
S0  (N1O, N2CS)         S1  (F1r, N2O)           S2  (F1ft, N2O)   
S3  (F1pr, N2O)          S7  (N1O, F2r)           S8  (N1O, F2ft)  
S9  (N1O, F2pr) 
Down States   
S4  (F1r, F2wr)            S5  (F1ft, F2wr)          S6  (F1pr, F2wr)  
S10  (F1r, F2wft)          S11  (F1ft, F2wft)        S12  (F1pr, F2wft)   
S13  (F1r, F2wpr)          S14  (F1ft, F2wpr)       S15  (F1pr, F2wpr) 
 
TRANSITION PROBABILITIES 
Let T0(=0), T1,T2 denotes the entry into any state Si  E. Let Xn be the states visited at 
epoch Tn+1  i.e. just after the transition at Tn. Then {Tn,Xn} is a Markov-renewal process 
with state space E and is semi Markov-Kernel over E. 
Qij(t) = Pr[Xn+1 = Sj, Tn+1 - Tn  t | Xn = Si]                                                                           (1) 
The stochastic matrix of the embedded Markov chain is 
P = (pij)= Qij () = Q().                                                                    (2) 
The Non-Zero Elements Of Pij Are Given Below: 
p12 = f*1()                                                 p14 = 1 – f*1() =  p(4)15  
p20 = p.g*1()                                             p23 = q.g*1()                                               
p25 = 1 – g*1()                                          p(5)26 = q.[1 – g*1()]                                    
p(5)27 = p.[1–g*1()]                                 p30 =h*1()                                                   
p36 = 1 – h*1() = p(6)37                            p56 = p11,12 = p14,15 = q                           
p57 = p11,8 = p14,9 =   p                             p74 = 1 - f*2()                                              
p78 = f*2() p80 = p.g*2()             p89 = q.g*2()    
p8,10 = 1 - g*2()                            p90 = h*2()  
p9,13 = 1 – h*2()  
p01 = p45 = p67 = p10,11 = p12,8 = p13,14 = p 15,9 = 1                                                                         (3-20)                                                              
From the above probabilities the following relation can be easily verifies as;                                                                  
p01 = 1                                                   p12 + p14 = 1 = p12 + p(4)15   
p20 + p23 + p25 = 1 = p20 + p23 + p(5)26 + p(5)27 
p30 + p36 = 1 = p30 + p(6)37                            p45 = 1    
p56 + p57 = 1                                                    p67 = 1   
p74 + p78 = 1                                                    p80 + p89 + p8,10 = 1 
p90 + p9,13 = 1                                                  p10,11 = 1  
p11,8 + p11,12 = 1                                              p12,8 = 1                                               
p13,14 = 1                                                          p14,9 + p14,15 = 1                                       
p15,9 = 1                                                                                                                              (21-36) 
 
MEAN SOJOURN TIMES 
The mean sojourn time in a state Si is defined as the length of stay in time in a state Si 
before transiting to any other state.  
If T denotes the sojourn time in Si,  then  
  i = E(T) =  0


 Pr[T>t] dt                                                                (37) 

Using This We Can Obtain The Following Expressions: 

0 = 

1

                       1 =  )(*f 
 111

          2 =  )(*g 
 111
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3 =  )(*h 
 111          7 =  )(*f 

 211
          8 =  )(*g 

 211
    

 9 =  )(*h 
 211

                                                        (38-44) 

 
MEAN TIME TO SYSTEM FAILURE (MTSF) 
the distribution function i(t) of the time to system failure with starting state S0. 
0(t) = Q01(t)$1(t)                                         
1(t) = Q12(t)$2(t) + Q14(t)  
2(t) = Q20(t)$0(t) + Q23(t)$3(t) + Q25(t)                  
3(t) = Q30(t)$0(t) + Q36(t) 
7(t) = Q74(t) + Q78(t)$8(t)                
8(t) = Q80(t)$0(t) + Q89(t)$9(t) + Q8,10(t) 
9(t) = Q90(t)$0(t) + Q9,13(t)                                                                         (45-51) 

Taking Laplace Stieltjes transform of relations and solving for 
~

0(s), we get 


~

0(s) = N1(s)/ D1(s)                                                                                (52) 

where  

 N1(s) = Q
~

01 Q
~

14 + Q
~

01 Q
~

12( Q
~

25+ Q
~

23 Q
~

36)                                                                                   (53) 

and      

 D1(s) = 1 – Q
~

01 Q
~

12( Q
~

20 + Q
~

23 Q
~

30)                                                                                                (54) 

By taking the limit s0 in equation (154), one gets 
~

0(0)=1, which implies that 
~

0(t) is a 

proper distribution function.  
 
            d               D’1(0) - N’1(0) 
E(T) = -     0(s)|s=0 =     = N1/D1                                                (55) 
            ds       D1(0)                 
              
where     
N1 = 0 + 1 + p12(2 + p233)                                                                                (56) 
and       
D1 = 1 – p12(p20 + p23p30)                                                                                                            (57) 
 
AVAILABILITY ANALYSIS:  
System availability is defined as  
Ai(t) = Pr [Starting from state Si the system is available at epoch  t without passing 
through any regenerative state] and  
Mi(t) = Pr [Starting from upstate Si the system remains up till epoch t without passing 
through any regenerative up state] 
Thus 
M0(t) = e-t                       M1(t) = e-t.F 1(t)                M2(t) = e-t.G 1(t)       
M3(t) = e-t. H 1(t)         M7(t) = e-t. F 2(t)   M8(t) = e-t. G 2(t)   
M9(t) = e-t. H 2(t)                                                                                                                   (58-64) 
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Now, obtaining Ai(t) by using elementary probability argument; 
A0(t) = M0(t) + q01(t)A1(t)                
A1(t) = M1(t) + q12(t)A2(t) + q(4)15(t)A5(t)  
A2(t) = M2(t) + q20(t)A0(t) + q23(t)A3(t) + q(5)26(t)A6(t) + q(5)27(t)A7(t) 
A3(t) = M3(t) + q30(t)A0(t) + q(7)37(t)A7(t)   
A4(t) = q45(t)A5(t)  
A5(t) = q56(t)A6(t) + q57(t)A7(t)                                
A6(t) = q67(t)A7(t)  
A7(t) = M7(t) + q74(t)A4(t) + q78(t)A8(t)  
A8(t) = M8(t) + q80(t)A0(t) + q89(t)A9(t) + q8,10(t)A10(t)  
A9(t) = M9(t) + q90(t)A0(t) + q9,13(t)A13(t)                    
A10(t) = q10,11(t)A11(t) 
A11(t) = q11,8(t)A8(t) + q11,12(t)A12(t)                          
A12(t) = q12,8(t)A8(t) 
A13(t) = q13,14(t)A14(t)                         
A14(t) = q14,9(t)A9(t) + q14,15(t)A15(t) 
A15(t) = q15,9(t)A9(t)                                                                (65-80) 
 
Now taking Laplace transform of above equation (65-80), and solving for pointwise 
availability A*0(s), we get,     
                           N2(s) 
      A*0 (s) =                                                                                                                                           (81) 
               D2(s)             
 
Where in terms of  
a = 1 - q*9,13q*13,14(q*14,9 + q*14,15q*15,9) 
b = 1 - q*8,10q*10,11(q*11,8 + q*11,12q*12,8) 
c = q*12(q*(5)27 + q*23q*(6)37 + q*(5)26q*67)  + q*(4)15(q*57 + q*56q*67)  
d = 1 - q*74q*45(q*57 + q*56q*67)                                                                         (82-85) 
We have 
N2(s) = [M*0 + q*01{M*1 + q*12(M*2 + q*23M*3)}]a.b.d + q*01[M*7a.b + q*78{M*8.a + q*-
89M*9}].c                                                                                                                                    (86) 
and  
D2(s) = 1 - q*01q*12(q*20 + q*23q*30)]a.b.d – q*01q*78[q*80.a + q*89q*90].c                   (87)
  
By taking the limit s0 in the relation (205), we get D2(0) = 0, therefore the steady state 
availability of the system when it starts operations from S0 is     
 A0()=limA0(t)=lim s.A0*(s)= N2(0)/D’2(0) = N2/D2                                                                    (88) 
           t          s0            
Where 
N2 = [0 + {1 + p12(2 + p233)}][p78(p80 + p89)p90] + [7(p80 + p89)p90 + p78(8p90 + 
p899)].[1 – p12(p20 + p23p30)]                                                                                                  (89) 
and  
D2 = p78(p80 + p89)p90[0 + m1 + p12{m2 + m3(1 + p(5)26)} + p(4)15(m2  
            + p56m3)] + [1 – p12(p20 + p23p30)]  [(p80 + p89)p90{7p74(m1 + m2  
      + p56m3)} + p78p90{8 + p8,10(m1 + m2 + m3)} + p78p89(9 + m1  
      + p9,13(m2 +p14,15m3)}]                                                                               (90) 
  
BUSY PERIOD ANANLYSIS 
Let us define Wi(t) as the probability that the system is under repair by repair facility in 
state Si  E at time t without transiting to any regenerative state.  
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Therefore  
W1(t) = )t(F1         W2(t) = )t(G1      W3(t) = )t(H1         W4(t) = )t(F1     

W5(t) = )t(G1        W6(t) = )t(H1      W7(t) = e-t )t(F2     W8(t) = e-t )t(G2   

W9(t) = e-t )t(H2   W10(t) = )t(F1     W11(t) = )t(G1        W12(t) = )t(H1    

W13(t) = )t(F1      W14(t) = )t(G1      W15(t) = )t(H1                                                       (91-105) 
 
Also let Bi(t) is the probability that the system is under repair by repair facility at time t, 
Thus the following recursive relations among Bi(t)’s can be obtained as ; 
B0(t) = q01(t)B1(t)                          
B1(t) = W1(t) + q12(t)B2(t) + q(4)15(t)B5(t)  
B2(t) = W2(t) + q20(t)B0(t) + q23(t)B3(t) + q(5)26(t)B6(t) + q(5)27(t)B7(t) 
B3(t) = W3(t) + q30(t)B0(t) + q(7)37(t)B7(t)                
B4(t) = W4(t) + q45(t)B5(t)  
B5(t) = W5(t) + q56(t)B6(t) + q57(t)B7(t)                  
B6(t) = W6(t) + q67(t)B7(t)  
B7(t) = W7(t) + q74(t)B4(t) + q78(t)B8(t)  
B8(t) = W8(t) + q80(t)B0(t) + q89(t)B9(t) + q8,10(t)B10(t)  
B9(t) = W9(t) + q90(t)B0(t) + q9,13(t)B13(t)        
B10(t) = W10(t) + q10,11(t)B11(t) 
B11(t) = W11(t) + q11,8(t)B8(t) + q11,12(t)B12(t)    
B12(t) = W12(t) + q12,8(t)B8(t)               
B13(t) = W13(t) + q13,14(t)B14(t)    
B14(t) = W14(t)+q14,9(t)B9(t) + q14,15(t)B15(t) 
B15(t) = W15(t) + q15,9(t)B9(t)                                                          (106-121) 
   
Taking Laplace transform of the equations and solving for B*0(s), we get;  
              B*0(s) = N3(s)/D3(s)                                                                             (122) 
Where D3(s) is same as D2(s) in (87) and  
N3(s) = q*01[W*1 + q*12(W*2 + q*23W*3 + q*(5)26W*6)]a.b.d   
          + q*01[c.(q*74W*4 + W*7) + e.(W*5 + W*6)]a.b  
          + q*01[q*78{W*8 + q*8,10(W*10 + q*10,11(W*11 

             + q*11,12W*12))}]a.c + q*01[q*78q*89 {W*9 + q*9,13(W*13  
          + q*13,14(W*14 + q*14,15W*15))}].c                                                                                (123) 

where   
e = q*74q*45q*12(q*(5)27 + q*23q*(6)37 + q*(5)26q*67) + q*(4)15                                                        (124) 
while a, b, c and d are same as in (82-85). 
In this steady state, the fraction of time for which the repair facility is busy in repair is 
given by 
B0 = lim B0(t) = lim s B*(s) = N3(0)/D’3(0) = N3/D3                                                            (125) 
       t            s  0 

where D3 is same as D2 in (90) and   
N3 = [m1 + p12{m2 + (p23 + p(5)26)m3}][p78(p80 + p89)p90].[7 + p74(m1  
        + m2 + m3)}{(p80 + p89)p90} + p78p90(8 + p8,10(m1 + m2  
       +  p11,12m3)} + p78p89{9 + p9,13(m1 + m2 + p14,15m3)}]  
       .[1 – p12(p20 + p23p30)]                                                                                           (126) 
 
EXPECTED NUMBER OF VISITS BY THE REPAIR FACILITY 
Let we define, Vi(t) as the expected number of visits by the repair facility in (0,t] given that 
the system initially started from regenerative state Si at t=0. Then following recurrence 
relations among Vi(t)‘s can be obtained as; 
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V0(t) = Q01(t)$[1 + V1(t)]                              
V1(t) = Q12(t)$V2(t) + Q(4)15(t)$V5(t)  
V2(t) = Q20(t)$V0(t) + Q23(t)$V3(t) + Q(5)26(t)$V6(t) + Q(5)27(t)$V7(t) 
V3(t) = Q30(t)$V0(t) + Q(7)37(t)$V7(t)                                     
V4(t) = Q45(t)$V5(t)  
V5(t) = Q56(t)$V6(t) + Q57(t)$V7(t)                                         
V6(t) = Q67(t)$V7(t)  
V7(t) = Q74(t)$V4(t) + Q78(t)$V8(t)  
V8(t) = Q80(t)$V0(t) + Q89(t)$V9(t) + Q8,10(t)$V10(t)  
V9(t) = Q90(t)$V0(t) + Q9,13(t)$V13(t)                                
V10(t) = Q10,11(t)$V11(t) 
V11(t) = Q11,8(t)$V8(t) + Q11,12(t)$V12(t)                              
V12(t) = Q12,8(t)$V8(t) 
V13(t) = Q13,14(t)$V14(t)                            
V14(t) = Q14,9(t)$V9(t) + Q14,15(t)$V15(t) 
V15(t) = Q15,9(t)$V9(t)                                                                         (127-142) 

Taking Laplace stieltjes transform of the above equations and solving for V
~

0(s), we get 

V
~

0(s) = N4(s)/D4(s)                                                                               (143) 

where in terms of  

A = 1 - Q
~

9,13 Q
~

13,14( Q
~

14,9 + Q
~

14,15 Q
~

15,9)   

B = 1 - Q
~

8,10 Q
~

10,11( Q
~

11,8 + Q
~

11,12 Q
~

12,8) 

C = Q
~

12( Q
~

(5)27 + Q
~

23 Q
~

(6)37 + Q
~

(5)26 Q
~

67) + Q
~

(4)15( Q
~

57 + Q
~

56 Q
~

67)  

D = 1 - Q
~

74 Q
~

45( Q
~

57 + Q
~

56 Q
~

67)                                                     (144-147) 

We get 

N4(s) = Q
~

01.A.B.D.                                                                                   (148) 

and 

 D4(s) = 1 - Q
~

01 Q
~

12( Q
~

20 + Q
~

23 Q
~

30)]A.B.D    

            - Q
~

01 Q
~

78[ Q
~

80.A + Q
~

89 Q
~

90].C                                                                                           (149) 

In steady state the number of visit per unit of time when the system starts after entrance 
into state S0 is ; 

V0 = lim [V0(t)/t] = lim s V
~

0(s) = N4/D4                                                  (150) 
       t                 s  0 

where D4 is same as D2  in (208)  and  
N4 = p78(p80 + p89).p90                                                                                                                       (151) 
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